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Introduction 
 
The processing of musical signals is very important in both the production and 
composition of music.  Audio effects have become commonplace since their advent in the 
late 1960’s.  As an emerging technology, engineers were forced to rely on circuit 
elements to get the desired effect.  Although technically effective, this level of 
technology was time-consuming from a production perspective and yielded a product that 
was both bulky and expensive.  The creation and refinement of digital signal processing 
coupled with other important advancements in the field of electrical engineering have 
moved audio effects into the mainstream.  By its very nature, digital signal processing has 
enabled the development and production of very high quality effects that are far less 
bulky and vastly less expensive.   
 
This paper describes the theory and usage of digital audio effects and how they can be 
implemented on the Motorola EVM56303 Digital Signal Processor. 
 
The audio effects discussed are: 

• Equalizer 
• Delay  
• Reverb 
• Sampler 
• Flange 
 

1. Equalizer 
 
1.1 - Introduction 
Equalizers have always been an essential element to audio playback. It is the ubiquitous 
nature of the equalizer today and our appreciation of the engineering that made the 
equalizer possible that prompted us to include it as one of our audio effects in the project.  
What follows is a detailed overview on the research and design that went into the 
development of our equalizer 
 
1.2 - Design Overview 
The first design consideration that had to be addressed concerned the number of bands we 
would have in our equalizer and which frequencies those bands would contain.  After 
investigation, we decided that the design that would best work with our overall project 
would be a three-band equalizer (with pass bands of 0-150 Hz for the lower band, 150-
1250 Hz in the mid-band, and 1250-20,000 Hz for the upper band).  Transfer functions of 
the filters that were implemented are shown below.   
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
1.2.1 Programming 
The next step involved determining the type of filter to be used.  Based on both our 
experience in lab and some additional research, we concluded that transposed direct form 
2 bi-quad stages would best implement the appropriate elliptic IIR filters.  We then set 
about determining the proper filter coefficients using MATLAB’s FDATOOL.  After 
designing the appropriate high and low pass filters for the treble and bass, it became 
apparent that MATLAB could not design a stable band pass filter.  From that, we decided 
to achieve the mid-band section of the equalizer, we would cascade a low pass and high 
pass filter with the appropriate upper and lower cut-off frequencies.  After the filters were 
designed in MATLAB and the proper form of the coefficients were extracted for the bi-
quad stages, we started on the assembly coding. 
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Figure 4: Signal Flow in Equalizer 

 
The backbone of the equalizer design was the FFT program from lab.  All FFT-relevant 
code was stripped out, leaving only the I/O support needed to implement the equalizer.  
Next we developed the IIR filter code.  Using old labs and lectures as a guide, the code 
was developed and tested successfully.  After testing the low-pass filter and completing 
all debug, the code was generalized to achieve all three bands of the equalizer.  Once that 
was achieved, knob support was included to give the filters the added functionality of 
variable gain.   
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1.2.3 Problems 
Although the development process went smoothly for the most part, it was not without 
problems.  In early attempts to implement the equalizer we attempted to store 256 
samples, and then process them all at once.  That attempt did not go well.  We realized 
that a better approach would be to process all the samples as they came in from the 
CODEC.  That indeed proved a better method.  Another problem that we ran into was in 
the final implementation when we ran out of room in the program memory.  The way the 
memory was set up we were to have 1000 lines (0x400) for program code.  In the final 
implementation of the equalizer, we had 0x4DC lines of code, which caused the 
processor to go off-chip, and caused the program to crash.  After an extensive debug 
effort we (with significant help from Prof. Metzger) located the problem that was causing 
the program to crash, and we were able to determine the root cause.  After we cleared 
those hurdles, the rest was clear sailing.   
 
Then end result is a very marketable product, especially when bundled with our other 
effects.  Future development for the equalizer aimed at enhancing its marketability would 
be to make more frequency bands for the user to set, and to give a wider range for gain 
swings in each band.  Overall, the quality of the audio out of our equalizer was very high, 
and the effect had the desired response in its final implementation.   
 
2. Delay 
 
2.1 - Introduction 
Delay, when considered as an acoustic effect, is the superposition of an original signal 
with one or more attenuated time-shifted versions of the original signal. Mathematically, 
the delayed output may be expressed as )......()()()()( 332211 DtxADtxADtxAtxty −+−+−+= . 
As a closed form summation the delayed output can thus be written as 
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the attenuation coefficient for each stage and D is the delay amount for each stage.  
 
2.2 - Delay as an audio effect  
Delay is used heavily as an audio effect in the music industry to add a sense of depth and 
realism to specific audio voicings or tracks. Delay processors are tailor made for 
recording studios, guitar effects, synthesiser effects as well as DJ gear. As an effect it is 
usually found as part of a larger ‘multi-effects’ processor where there are numerous 
additional audio effects built into the main processor.  
Most delay processors usually have several parameters that control the size of the 
attenuation coefficient, the amount of delay and, in certain circumstances, the number of 
delay stages. 
The delay effect is a general model for another very common effect, echo. Echo is simply 
a multistage delay with integer multiple delays between each stage and exponential decay 
in attenuation coefficients between each delay stage. This models an original signal being 
reflected and attenuated at regular intervals. For its close resemblance to echo and its 



inspiration for other effects such as chorus and reverberation delay is also an interesting 
starting point in the design of audio effects. 
 
2.3 - Design considerations 

Referring to the general delay equation we have that ∑
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delay output we have a series of multipliplication and additions of various different 
delayed versions of the original input signal. This makes delay an idel effect to be 
implemented on a DSP processor.  
Most professional delay processors on the market make use of an adjustable, multi-stage 
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can be varied to select the number of stages. Even though it would be a relatively easy 
task (in DSP terms) to expand this delay output to two or more stages we decided that we 
would use a one stage delay model in our implementation. This is the most common 
model found in lower end consumer targeted products. It was found that this one stage 
model sounded had suitable depth nd quality to be used in the final implementation.  
It was hence decided that our implementation of delay would use the one stage delay 
model ][][][ 11 DnxAnxny −+= . Our final implementation would ideally make use of knobs 
to control the attenuation and amount of delay of the first stage. The range and step size 
of attenuation and delay would be determined by the range of the knob parameters as 
well as the sampling rate and buffer size we would use in our code for delay. 
 
2.4 - Delay implementation 
To implement the delay code we decided to make use of already existing code for the 
Motorola EVM56303 DSP that computed FFT’s. This code already had the required 
CODEC appendages to make use of the onboard switches, external knobs and to make 
use of the inputting and outputting of samples through the audio in/out of the 
development board. 
 
2.4.1 - Basic implementation 
 
To start off we decided it would be best to implement a delay model with constant 
attenuation coefficient and delay. The outputted delayed signal was to be of the form 

)5.0(5.0)()( −+= txtxty . Below is the main portion of the code used to implement this 
function: 
 
 loop    ;  
 jsr     get_l_val   ; Get new sample from CODEC and store in accumulator  
 move a,x:(r4)   ; Store new sample in buffer 
 move x:(r4)-,x0   ; Put new sample in x0 decrement to delayed sample 
 move x:(r4),a   ; Move delayed sample into accumulator 
 asr #1,a,a      ; Shift delayed sample right by one bit (divide by 2), put in a 
 add x0,a      ; Add new sample with 0.5 * delayed sample, store in a 
 move    a,x0   ; Move delayed sequence from accumulator to x0 
 jsr     put_l_val   ; Output delayed sequence to CODEC 

jmp loop      ; Start over from start of loop 



The code starts off by getting a new sample from the CODEC and storing it in the 
accumulator, using the function get_l_val. The sample is then moved from the 
accumulator into the buffer. The size of the buffer has been specified earlier in the code 
and is set to the same size as the sampling rate. The new sample is then copied to the x0 
register and the pointer is decremented to be at the position of the older, delayed sample. 
This delayed sample is then moved into the accumulator where it is halved. The new 
sample (in x0) is then added to the halved, delayed sample and stored in the accumulator. 
Once this has been done the entire delayed output is then stored in the x0 register where 
the put_l_val function takes this delayed sample and transfers it to the CODEC where it is 
outputted to the audio out of the development board.  
From the above code snippet it easy to see how the attenuation coefficient is implemented 
into the delay stage. However, the way in which delay is introduced into the signal is a 
little more subtle. The amount of delay is intrinsically specified by the size of the offset 
used in the n (offset) register. When the pointer is decremented, the size of the decrement 
is specified by the offset register. If we wanted to grab an 1800 old sample, the offset 
register would be appropriately set to 1800. In the case of our code, we made use of a 
sample rate and modulo size of 27000 samples. Since we wanted a half second delay we 
set our offset register to 13500. In generality the delay time can be set by the relation 

sizebuffer 
sizeoffset delay time = . 

 
2.4.2 - Final implementation 
In the final implementation knob support was added to the code to change the amount of 
delay and the attenuation coefficient. The first knob was used to modify the size of the 
offset in the offset register which appropriately changed the amount of delay. Based on 
the use of a 27000 Hz sample rate, it was decided that the knob would change the amount 
of delay from 0 s to 1 s in 66.7ms increments. The second knob as used to modify the 
attenuation coefficient from 0 to 0.5 in 0.033 increments.  
 
2.5 - Performance and improvement of delay effect 
The final implementation of the delay effect proved to be a versatile high quality 
implementation. The amount of delay and attenuation had a fairly wide range. The delay 
ranged from 66.7ms to 1s. This gave a chorus sounding effect on one extreme to a long 
tap delay on the other extreme. The attenuation variation proved to be a useful parameter 
to incorporate as it adjusted the perceived level of the combined outputted level.  
Even though we were pleased with the final implementation of the delay effect several 
improvements could be made to make this effect more marketable. Professional level 
delay processors make use of variable stage delay stages. This would be the most 
important and probably the most challenging feature to implement but would make the 
transition of our effect from consumer level to professional level. The second major 
addition to the design would be the addition of more memory so that the sampling rate 
could be increased upwards to 48000 Hz. This addition is completely hardware 
dependent and would not require much modification of our code.  
 



 
3. Reverb 
 
3.1 - Introduction 
Reverberation is the combined effect of multiple sound reflections within a room.  When 
a sound is played in a room, the sound wave does not only travel towards the listener’s 
ears; it also spreads throughout the entire room.  As the sound wave hits various obstacles 
in the room, most noticeably walls, it is reflected in other directions.  During these 
reflections, the obstacles absorb some of the sound wave’s energy based on the properties 
of their materials.  This reduces the amplitude of the reflected sound waves.  The time 
taken for these reflections increases the delay associated with the reflected sound waves.  
When the ear receives the superposition of all these delayed sound waves, it detects not 
only the original sound, but also the environment that the sound was played in.  In 
general, this is why things sound different in a bathroom as opposed to a living room or a 
concert hall. 
 
3.2 – Modeling Reverb 
From the above description, it can be seen that there are two major components to the 
principle of reverberation: one is the size of the room, the other is the materials used in 
the room.  The size of the room is important because as the size increases, the sound 
waves have to travel longer distances, and thus longer delays are created.  The size of the 
room can be represented by it’s volume.  The materials used in the room can be 
represented by their absorption coefficients.  As the absorption coefficients increase, the 
more the material will decrease the amplitude of the sound wave it reflects.  The exact 
opposite of the absorption coefficient is the reflection coefficient.   
 
A common measurement of this effect is through a room’s reverberation time (T60).  The 
reverberation time is defined to be the time it takes a sound to reduce 60 dB in amplitude 
from the time its source is halted.  The equation follows: 
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where V is the volume of the room, Sn is the surface area of an object, and αn is the 
object’s absorption coefficient. 
 
3.3 – Brief History 
Reverberation and other acoustic principles were known by the ancient Greeks.  Their 
amphitheatres were designed so that sounds on the stage were projected while sounds in 
the crowd were muffled.  Throughout times since, theaters evolved with the popular 
music of the time.  It was found that a room could be acoustically matched to the music 
played in it.  In fact, it was while fixing a problem with the acoustics at Harvard’s Fogg 
theater in 1895, that a physicist named Sabine formed the equation given above for the 
reverberation time.   
 



Although reverberation is still a factor in designing acoustic environments for the best 
possible received sound, it has taken on a new application in the making of music.  When 
used for this purpose, reverberation is best known as an audio effect called reverb.  By 
using reverb, an instrument or voice can be altered in its characteristic sound.  Perhaps 
most commonly, reverb is added to make sounds have more weight and depth then 
normal.   
 
Reverb is also becoming more popular as a playback option.  Many stereos now have 
features where the user can select the musical environment—sometimes so specifically 
that, say, a particular opera house can be specified.  There are also products that can 
calculate the reverberations in a room and then inversely compensate for them during 
playback.   
 
3.4 – Implementation 
There are many different ways to implement the reverb effect.  Interestingly, analog 
reverb effects were mostly done by putting the signal on springs, vibrating metal plates, 
and even rippling water tanks.  With digital reverb, algorithms on DSPs are used.  All of 
these techniques are based on two ideas: delay and attenuation.  As the number of delay 
stages increases, the effect becomes more believable and accurate.  It is also better if the 
delay stages are random (hence the vibrating plate.)   
 
In early digital designs, comb and all-pass filters were used to create the effect.  It is now 
done with a large number of programmable delay stages, gains, filters, and feedback 
loops.  This can all be implemented using DSP.  The implementation used in this project 
is a very simplified version of this. 
 
It was decided that the reverb effect for this project should be a relatively simple one 
since four other effects were also being created simultaneously.  Therefore, the reverb at 
first took the very simple form of one delay stage with an associated attenuation.  It is 
important to note that this equation has feedback—the delay stage is being fed with 
outputs rather than inputs.  The equation follows: 
 
 

y[n] = x[n] + A*y[n-D] where A=attenuation constant, D=delay time 
 
 
Although reverb can be much more complex, this equation was chosen due to its 
simplicity as well its ability to be easily upgraded with more delay stages.  This was a 
good place to start programming. 
 
3.5 – Writing the Code 
First, the algorithm was implemented using MATLAB.  The code was implemented using 
an array; although this was similar to a buffer in DSP, the addressing did not involve a 
pointer and was not circular.  Also, a function called ‘wavread’ was used to input a 
complete sound file and the function ‘sound’ was used to play the result.  All this coupled 
with a large ‘for’ loop led to long execution times.  It was difficult to assess the quality of 



the effect because it was not in real time.  Although the MATLAB coding was a good 
exercise, not much was determined.  The code follows: 
 

function [y]=reverb2(fn);  
% fn-string containing filename of wav file  
[x,fs]=wavread(fn);   %read in wav file  
xlen=length(x);    %Calc. the number of samples in the file  
%Initialize constants  
a=0.3;delay=.2; 
D=delay*fs;    %Calculate the number of samples in the delay  
y=zeros(size(x));  
%reverb 
for i=2*D+1:1:xlen    % D+1 is the index where the delay starts 
   y(i)=x(i)+ a*y(i-D)+ a*.8*y(i-2*D); 
end; 
sound(y,fs);    %play y 

 
As is the case with the other effects in this project, the FFTLab code written by Professor 
Metzger for the lab exercises was used as the foundation of the reverb program.  This 
existing code was used as a basis for input/output support between the A/D, DSP, and 
D/A.  All relevance towards its previous FFT functions was removed or modified.  The 
primary functions of the stripped code are setting up memory, initializing the CODEC, 
and providing interrupt request support. 
 
It is clear that the equation above will need a circular buffer to keep track of delayed 
outputs.  This was easy to implement using modulo addressing and a pointer.  The 
maximum delay can be defined by setting the modulo of the buffer pointer to be the 
product of the delay in seconds and the sampling frequency in Hz.  This means that the 
oldest value (position) in the buffer always corresponds to the maximum delay set above.  
In this implementation, a 48 kHz sampling rate and a 24,000 point buffer was used, at 
first, for a maximum delay of a half of a second.  This was later found to be a rather short 
reverberation time. 
 
The first generation code of the reverb loop follows: 
 
reverb 
 clr     a  ;clear accumulator to be safe 
 jsr     get_l_val ;input new sample from CODEC, store in accumulator 
 move        a,x:(r4)- ;store new sample to buffer, decrement to delayed pos. 
 move        x:(r4)+,x0 ;put delayed sample into x0, increment to new pos. 
 mac     #0.5,x0,a ;scale x0, accumulate w/ new sample 
 move    a,x:(r4)- ;put reverbed sample into new, decrement 
 move    a,x0  ;move value to x0 for output 
 jsr     put_l_val ;output reverbed sample to CODEC 
 jmp     reverb  ;start over 
 
This code is pretty straightforward.  A new sample is brought in from the CODEC and 
stored into the first buffer position.  This will later be replaced by the new output.  This is 
done because the first time through the code, the buffer needs to be filled with 
preliminary values.  The buffer pointer is then decremented and the oldest value is placed 
into x0.  The buffer pointer is then incremented to point back to the position it started out 
at.  The value in x0 is then scaled and accumulated with the new sample already in the 



accumulator.  This value is then copied into the buffer and output to the CODEC.  The 
buffer pointer is decremented and the whole process starts over. 
 
3.6 – Testing, Updating, Adding Functionality 
Listening to this version of the reverb, it sounded too much like delay when running it on 
music files.  When using a guitar, the sound was not as desired.  It was too obvious in its 
delay mechanism and not colored enough in its presentation.  It was decided to add an 
additional delay stage to the code.  This was done by using an appropriate offset register 
when addressing the buffer.  This new delay value was stored in x1 and the code required 
an additional mac instruction. 
 
It was decided that this effect would be used only with guitar, so the sampling rate was 
dropped to 16 kHz.  Even 8 kHz would have been appropriate for guitar, but the extra 
room provided by the higher rate might be appreciated sometime.  It was found the best 
sounding reverb occurred with the delay stages set at 1.5 and 0.25 seconds with  
coefficients of 0.1 and 0.3 respectively.  The effect at this point was very likeable and 
sounded surprisingly similar to professional reverb systems. 
 
Just because these parameters sounded best for one situation, it does not mean they will 
be ideal in all instances.  Therefore, knob support was added to the code so that 
parameters could be changed on the fly.  The code for the knobs was supplied by 
Professor Metzger.  It was first modified for our use in the flanging effect.  The major 
modification was the addition of limits to the rotation of the knobs to provide 16 possible 
knob positions. 
 
Knob one was assigned to adjust the short delay time between zero and 1 second by 
adjusting the size of the offset register.  The long delay time was kept at 1.5 seconds by 
the buffer size.  Knob two was assigned to adjust the attenuation coefficient on the short 
delay stage between zero and 0.5.  The coefficient of the 1.5 second delay stage was kept 
at 0.1.  The knobs were set to initialize to the preferred settings mentioned above: 0.25 
seconds and 0.3 attenuation. 
 
Also, it was decided to provide an on/off switch for the effect.  This was done through 
use of SW3 interrupt support.  The code started off getting a value from the CODEC, 
outputting it to the CODEC, and checking to see if SW3 was pressed.  When this event 
happened, the event bit was cleared and the code jumped into the reverb loop while still 
checking for an interrupt to send it back to its previous state. 
 
These additions to the code made the effect sound much more professional and also 
added a useful interface to the major parameters of the effect.  For use with a guitar, a 
preamplifier was also added to the input of the CODEC by setting an option.  Virtually 
all effect processors on the market have the on/off feature and certainly the option to 
adjust the effect’s parameters.  
 



3.6 – Final Testing 
Upon final iteration of the code with all the features mentioned above added, the effect 
sounded very good.  The obvious delays from the first version were all but gone.  The 
sound had a nice amount of echo and the character of the sound was very appropriate for 
the guitar.  The effect was not able to mimic an environment like some other processors 
are capable of, but did succeed in supporting and strengthening the character of the sound 
as might be done when recording. 
 
Not all combinations of knob settings sounded great.  However, depending on what was 
being played, some settings sounded really good.  It was nice to be able to play with the 
settings in real-time.  The effect on/off switch was also a good idea since it provides the 
player with even more control over the sound. 
 
3.7 - Conclusions 
Although the reverb sounds good as it is, it has a lot of room for improvement.  More 
delay stages could be added, the delay times could be randomized, filters could be used to 
separate out frequencies, more knobs could be used to control even more parameters of 
the function, etc.  The list is endless 
 
For what it is, the reverb effect could be marketed as a very simple, easy-to-use reverb 
processor.  The SW3 function could be assigned to a pedal, and the knobs could be easily 
interfaced.  With the addition of some of the ideas given above, a respectable product 
could be made provided it could sell for about $100 or so.          
 

4. Sampler 
 
4.1 Introduction 
A sampler is a device used for recording and playing back sound, in which computer 
RAM is used as the storage medium.   
 
The first sampler was invented in 1963 by Mellotron.  Organ like in appearance, each key 
was connected to a head and tape loop.  Samples were recorded onto each tape loop per 
customers request at the factory.  One of the most famous uses of the Melotron can be 
heard as the flute sound in Led Zepplin’s Stairway to Heaven.  Over the years, samplers 
have evolved into smaller, digital rackmount units and footpedals.  Samples are easily 
recorded by the user in an “on the fly” fashion. 
 
4.2 Design Overview 
Samplers read in samples at specified sample rate and store them in RAM.  The amount 
of music a sampler can store is therefore dependent on the sampling rate and the amount 
of RAM available on the device.  For example, a sampler sampling at a CD-quality rate 
of 44,100 Hz can store 1 second of music if 44,100 words of RAM are available.  44,100 
Hz is the CD-quality standard, which ensures that frequencies up to 22,050 Hz (above the 
range of human hearing) are recorded.  For our audio project we decided on a sample rate 
of 8 kHz to be used for sampling a guitar, which produced its highest fundamental at 



1328 Hz.  This enabled our sampler to store four seconds of music in the 32k words off-
chip memory available on the Motorola EVM56303.  Note that the sampling rate of 8 
kHz sounds fine on our guitar application because the harmonics are not very strong on 
this particular instrument.  This sampling rate would not however be appropriate for 
sampling instruments with lots of harmonic overtones (distorted guitar, saxophones, …). 

4.2.1 Programming 
The following sampler function allows an unprocessed guitar signal to pass through the 
EVM56303 through the entire execution of the program.  When SW3 is pushed, the 
sampler is activated and samples are continuously written into memory until SW3 is 
pushed again or until the buffer is filled with 32,000 samples.  Upon either of these two 
exit conditions, the contents of the buffer are continuously played in a looping manner 
until SW3 is pushed again.  The process can then be repeated by the user indefinitely.  
 
The main issue was creating  a circular buffer with a size equivalent to the number of 
samples stored in it.  This is ordinarily accomplished by loading a modulo register with 
the number of samples in the buffer minus one.  Since the size of the buffer is dependant 
on when the user toggles the SW3, the modulo register needs to be set during runtime.  
To do this, the program starts out with the modulo set to linear addressing.  Then a 
counter is used to count the number of samples loaded into the buffer.  When the buffer is 
filled, the contents of the counter minus one are loaded into the modulo register.  

4.2.2 Problems 
The SW3 switch physically bounces for about 20 milliseconds after it has been pushed.  
This means that the state of the SW3 switch can not be reliably checked for at least 20 
milliseconds after the switch has been pushed.  Fortunately, this is not a problem for our 
application as we always sample for periods which exceed 20 milliseconds.  It is however 
a slight nuisance to have to wait 20 milliseconds between turning off the sampler and 
restarting it (i.e. reloading the buffer with new samples).  It is for this reason that the wait 
subroutines exist in the program. 

4.2.3 Usage 
Samplers are used extensively in the recording industry.  Modern recording studios have 
digital sound banks filled with horn sounds, drum sounds, etc…  Most of the sounds we 
hear in popular music are actually samples, which are played back in the required time 
and pitch. 
 
Samplers are also used in live performance.  Guitar virtuoso, Michael Hedges, often 
sampled acoustic guitar loops and would then weave countermelodies over top of the 
sampled melody. 
 
Samplers are also valuable practicing aides.  It is very helpful for beginning musicians to 
practice scales over a repetitive rhythm.  This enforces good time keeping and musicality. 



 

5.Flange 
 
5.1 Introduction 
The flange effect was invented by John Lennon using a reel-to-reel tape machine.  The 
effect was performed by gently tapping the edges (flanges) of the reels, effectively 
slowing the reels down, and mixing the sound with the original sound.  The resulting 
sound creates a varying delay, resulting in small changes in pitch. 
 

5.2 Design Considerations 
There are a few concerns when one begins to approach the implementation of the flange 
effect using digital means.  One such concern is what measures need to be taken in order 
for the output to sound smooth.  One problem with using a digital means to implement 
flange is that it can sometimes sound choppy because of the gap in time between samples.  
This can be countered using oversampling.  This is commonly done using a linear fit to 
place samples between two consecutive sampled points.  The drawback to using 
oversampling is that there is more processing time to interpolate the values, and a larger 
buffer is needed to store the same amount of audio time.  The benefit is a smoother 
sounding effect. 

 
In our first trials through Matlab, we used 5x oversampling, placing 4 samples using a 
linear fit between the original sampled points.  The effect sounded very smooth; however, 
this operation took a long time for Matlab to process.  When we took out the 
oversampling, the effect sounded identical.  This led us to drop oversampling from our 
considerations. 
 

5.2.1 Implementation of Varying Delay 
The main task in the flange effect is implementing a varying delay.  The approach we 
took was to use a table of values as indexing offset values.  By using a periodic function 
with the values of one period stored in a circular buffer, you can cycle through the buffer, 
one sample at a time, and use that value as an offset for referencing data values.  The first 
approach we took in Matlab was to use a triangle waveform as our offset values.  This 
resulted in two distinct pitch shifts… one lower and one equally higher from the original 
sound.  The solution to this was to use a sine wave as the basis of our offset values.  This 
results in smooth transitions between lower and higher pitch shifts, and a more natural 
sounding effect. 
 

5.2.2 Logistics 
The first decision we had to make in our preparation for coding flange on the Motorola 
DSP was to decide what kind of sampling rate we wanted to use.  Since the flange effect 
itself is not very computationally intensive, we decided to use a sampling frequency of 
48,000 Hz.  This sampling frequency makes the effect more versatile, allowing for the 



effect to be applied to music with higher tones than just guitar.  After this was decided, 
we needed to figure out what size buffers would need to be set up in order for the flange 
to sound good.   

 
In our Matlab simulations, we found that a good size for the audio buffer would be on the 
order of 200 – 2000 samples, depending on the frequency of the flange and how much of 
a pitch shift the user prefers.  This is a pretty reasonable size buffer to implement on our 
evaluation board, and can be stored in either on-chip or off-chip memory.   
 
The big problem with using a sinusoidal waveform as the flange envelope is the number 
of sine values you would need to implement the flange.  Since the DSP has no sine 
function built in, it is the programmer’s responsibility to generate the sine values.  
Traditional flange has a frequency of around 1Hz, which when sampling at 48 kHz, 
would require a table of 48,000 sine table values.  It would be nice (and necessary, since 
the total amount of data memory on our evaluation board is less than 48,000 words) if the 
same frequency of flange could be generated using a smaller sine table. 
 

5.2.3 Problem Solutions 
The solution we decided to work towards was using the same idea of linear interpolation 
we were thinking about with the audio samples, only this time apply it to the sine table 
data points.  Since the sine table’s only effect on the flanged audio is a change in pitch, it 
is not necessary to be extremely precise with the roundness of it, as the human ear can not 
detect tiny variances in pitch.  With this in mind, we changed our Matlab simulation to 
use a 256 point sine table and interpolate between the data points.  When we ran the trial, 
the difference between having a small sine table in which interpolation was used and 
having a large sine table without interpolation was indistinguishable.  The next step was 
to move on to translating our Matlab code into the assembly language that our DSP uses. 
 

5.3 DSP Coding 
The first DSP coding was done using interpolation of a 256 point sine table.  The 
program was set up using a do loop, as it was written in our Matlab code.  We assigned a 
variable that indicated the number of points between consecutive sine table points we 
wanted to interpolate for, and used that as the loop counter.  We also stored the inverse of 
the loop counter ahead of time, in fractional format, in another memory location.  The 
main portion of the loop was then based on the equation: 
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Where A is an integer value, p1 and p2 are pointers to two consecutive sine table values, 
N is the number of points you want to interpolate for, and counter is a counter for how 
many times you have gone through the do loop. 

 
The coding of this implementation was very difficult to debug, as it was impossible to run 
through our program using the step function of the debugger due to interrupt support.  
Another problem we ran into with this code was that it required a lot of multiplications, 



and data movements.  After further thought, and collaboration with Professor Metzger, 
we ended up dropping our do loop and the original equation for a similar equation that 
required fewer multiplications and data movements.  The equation we developed took the 
form of: 
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Where N is the desired size of the sine table, and B is a number generated by a modulo 
register and is used as a counter.  With this implementation, it was easy to set up a couple 
of if statements to test for boundaries, and the debugging was much easier.  After we got 
this implementation to work, the next step was to figure out what kind of customization 
options we wanted to give the user. 
 

5.3.1 Knob Support 
With the four knobs we had at our disposal, we had some flexibility in making our flange 
algorithm adaptable.  The typical varying delay for flange has a form of: 
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By changing A, you can change how far back and forth the flange goes, effectively 
changing the amount of pitch shift associated with the flange.  To implement knob 
control for this factor, we set up the knobs to go from 0 to 15.  Then, by multiplying by a 
constant gain factor, you can obtain a proper offset indexing value that will control how 
far back and forth the flange oscillates.  We used knob one to control this. By changing 
w, you can change the frequency the flange oscillates.  This was implemented by 
changing the number of points you interpolate between consecutive sine values.  The 
tricky part we ran into in coding this part of the program was the division that was 
present in the equation.  Division is very difficult to perform on the DSP.  To solve this, 
we ended up creating a 16 value array to hold the possible values of 1/N.  Then, buy 
using the value generated by the knob (0 – 15) as an offset, we were able to get the 
correct value of 1/N.  Knob 2 controls the frequency of the flange.  The third and fourth 
knobs were used to control the gain of the regular audio and the flanged audio 
respectively. 
 
Conclusion 
 
In conclusion, using the Motorola 56303 DSP, we were able to implement several 
different audio effects using the same hardware.  The ability to use the same hardware for 
different tasks ends up bringing the overall cost down to a very affordable level.  Our 
project, with a few modifications and improvements, could be marketed to the entry level 
audio industry.  Adding more memory would allow us to load all audio effects at the 
same time, creating a true multi effects processor.  By having all the effects on the chip at 
once, we could toggle effects using a knob or run multiple effects at once.  This has been 
a good introductory design experience incorporating digital signal processing techniques 
with a marketable application. 


